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Abstract—In this paper, we present an efficient page seg-
mentation method for historical document images. Many ex-
isting methods either rely on hand-crafted features or per-
form rather slow as they treat the problem as a pixel-level
assignment problem. In order to create a feasible method
for real applications, we propose to use superpixels as basic
units of segmentation, and features are learned directly from
pixels. An image is first oversegmented into superpixels with
the simple linear iterative clustering (SLIC) algorithm. Then,
each superpixel is represented by the features of its central
pixel. The features are learned from pixel intensity values with
stacked convolutional autoencoders in an unsupervised manner.
A support vector machine (SVM) classifier is used to classify
superpixels into four classes: periphery, background, text block,
and decoration. Finally, the segmentation results are refined by
a connected component based smoothing procedure. Experi-
ments on three public datasets demonstrate that compared to
our previous method, the proposed method is much faster and
achieves comparable segmentation results. Additionally, much
fewer pixels are used for classifier training.

Keywords-page segmentation; layout analysis; historical doc-
ument image; superpixel; SLIC; autoencoder

I. INTRODUCTION

Page segmentation is considered as an important initial

step for document image analysis and understanding. It

aims at splitting a page image into regions of interest and

distinguishing text blocks from the regions (Figure 1). Page

segmentation on historical document images is challenging

due to many variations such as layout structure, decoration,

writing style, and degradation. Our goal is to develop a

generic, flexible, and robust segmentation method to delimit

text blocks, text lines, and eventually isolated words.

Some page segmentation methods have been proposed

in the literature. These systems work on pixel level and

rely on hand-crafted features [2], [3], [4], [14], prior know-

ledge [12], [15], [17], or models that combine hand-crafted

features with domain knowledge [7], [11].

In this paper, we propose a novel page segmentation

method based on superpixel classification with unsupervised

feature learning. The goal is to produce a pixel-level seg-

mentation of document images. In our previous methods [4],

[6], we consider the page segmentation problem as a pixel

labelling problem, i.e., each pixel is classified as either

periphery, background, text block, or decoration. However,

the pixel labeling methods are computationally expensive. In

this work, rather than using pixels, superpixels, i.e., small

regions obtained from an over segmentation are considered

as the elementary units of our page segmentation task.

Then features are learned directly from randomly selected

image patches by using stacked convolutional autoencoders.

With a support vector machine (SVM) trained with the

features of the central pixels of the superpixels, an image

is segmented into four regions as mentioned above. Finally,

the segmentation results are refined by a connected com-

ponents based smoothing procedure. The advantages of the

proposed method are: (1) The page segmentation is efficient

compared to the previous methods. It is on average 394

times faster to segment an image of 489 × 742 pixels,

which makes the method feasible for real applications. (2)
With much fewer pixels for classifier training, the proposed

method achieves comparable segmentation results. (3) In

the previous method [6], pixels are randomly selected for

classifier training. These pixels may contain redundancy.

In contrast, the proposed method selects only the central

pixels of the superpixels as training samples. These pixels

are informative and representative, which is demonstrated in

Figure 1: Page segmentation result. The left is the original image.
The right is the segmentation result by using the proposed method.
The colors: black, white, blue, and red are used to represent:
periphery, background, text block, and decoration respectively.
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the experiments.

In summary, our method differs from traditional page

segmentation methods in three aspects. (1) By applying

superpixels algorithm, the run time of segmentation is re-

duced dramatically. (2) The features are learned directly

from the pixels without supervision. (3) Preprocessing (e.g.,

binarization, connected components extraction) and prior

knowledge of layout are not needed.

The rest of the paper is organized as follows. Section II

gives an overview of some related work in page segment-

ation for historical document images. Section III describes

the proposed method. Section IV reports the experimental

results and Section V presents the conclusion.

II. RELATED WORK

Some page segmentation methods for historical document

images have been proposed. Most of them are based on im-

age preprocessing such as binarization, connected compon-

ents (CCs) extraction on pixel level, off-the-shelf classifiers

trained on hand-crafted features, and prior knowledge.

Van Phan et al. [17] used the area Voronoi diagram

to represent the neighborhood and boundary of CCs. By

applying predefined rules, characters were extracted by

grouping adjacent Voronoi regions. Finally, recursive x-

y cut was applied to refine the segmentation. Bukhari et

al. [2] used the normalized height, foreground area, relative

distance, orientation, and neighbourhood information of the

CCs as features to train a multilayer perceptron classifier.

The trained classifier was used to classify CCs to the relevant

class of text. Similarly, Cohen et al. [7] convolved images

with different filters to extract local orientation of the pixels.

The CCs constituted of pixels with horizontal orientation

were considered as text lines. Based on prior knowledge,

noise CCs were removed. Features such as bounding box

size, area, stroke width, estimated text lines distance were

used to label each CC into text or non-text by using an

energy minimization method.

In our previous work [6], we used stacked convolutional

autoencoders to learn features directly from pixels. The

learned features were used to train an SVM. With this

SVM, pixels were classified into four classes, i.e., periphery,

background, text block, and decoration. Since the method

was based on pixel-level classification, it was very slow (cf.

Table I). On a cluster,1 it took more than 20 minutes to seg-

ment an image with 550× 850 pixels. Therefore, the pixel-

level method is not applicable on standard environments.

III. SYSTEM DESCRIPTION

The proposed method consists of four steps. The first

step relies on superpixel algorithms, i.e., we segment an

image into superpixels. In the second step, features are

learned with the unsupervised learning method as presented

1Intel Xeon Processor 2.20 GHz with 8 cores.
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Figure 2: Page segmentation workflow.

in [6]. In the third step, the learned features are used to

train an SVM. With this SVM, the superpixels are classified

into: periphery, background, text block, and decoration.

Finally, we refine the segmentation results by eliminating the

connected components (CCs) with predefined rules, where

CCs are generated based on the predicted labels of the pixels.

Figure 2 gives the whole workflow of our method.

A. Superpixel

Superpixel algorithm aims at grouping pixels into per-

ceptually meaningful patches that belong to the same ob-

ject. The motivation of embedding the superpixel algorithm

into our system is to reduce the computational complexity

without degrading the quality of the segmentation. For the

purpose of increasing the speed, instead of predicting each

pixel’s class, the method predicts each superpixel’s class.

Superpixels have been used in many computer vision

applications [10], [16], [18]. They also have been applied for

page segmentation for historical document images. Cohen

et al. [7] grouped pixels into superpixels by using the

Earth Mover’s Distance metric as the superpixel distance

in the CIE-Lab color distance. Mehri et al. [14] generated

superpixels by using the simple linear iterative clustering

(SLIC) [1] algorithm.
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In this work, we evaluate four state-of-the-art super-

pixel algorithms [19], [8], [9], [1]. The watershed (WS)

algorithm [19] is a gradient ascent approach. In this al-

gorithm, an image is viewed as a topological map where

pixel intensity is represented by its gradient. By placing a

waterdroplet in any of pixels, it will fall down towards a

local minimum. The pixels which fall inside the same local

minimum belong to the same superpixel. The mean shift

(MS) algorithm [8] is a feature-space analysis technique

for locating the maxima of a density function. It is used

to find modes in the color or intensity feature space of an

image. Pixels that converge to the same mode define the

superpixels. In [9], Felzenszwalb and Huttenlocher proposed

a graph-based approach. Pixels are considered as nodes

on a graph. The minimum spanning trees of constituent

pixels are considered as superpixels by applying clustering

algorithm. The simple linear iterative clustering (SLIC) [1] is

an adaptation of k-means clustering approach, where k is the

desired number of approximately equally sized superpixels.

Color and spatial proximity are used as distance measure.

By limiting the search space to a region proportional to the

superpixel’s size, the number of distance calculations in the

optimization is reduced.

Achanta et al. [1] showed that each of the superpixel

algorithm has its own advantages and drawbacks that may

be better suited to a particular application. For our applic-

ation, we define the following criteria for the evaluation of

superpixel algorithms: (1) The superpixel algorithm should

increase the speed and improve (or not degrade) the quality

of segmentation. (2) The generated superpixels should have

regular shapes and sizes, since our future work is to create

a graph based on the generated superpixels and use a

probabilistic graphical model framework, e.g., conditional

random field (CRF), to refine the segmentation results.

Regarding the two criteria, SLIC is applied as a prepro-

cessing step of our page segmentation method. Compared

to other superpixel algorithms, SLIC reaches a compromise

between speed and segmentation quality. Furthermore, the

generated superpixels’ shapes are regular and approximately

equally sized. Benefiting from this property, a graphical

model can be applied to refine the segmentation results. The

experimental results of the comparison of the four state-of-

the-art superpixel algorithms are given in Section IV-B.

B. Feature learning

The architecture of the feature learning method is based

on our previous work [6]. We use a single-layer fully-

connected neural network as an autoencoder (AE) which

learns to reconstruct its input data. Features can be dis-

covered in the hidden layer. Concretely, the AE learns the

weights W1 and W2, such that f(W2f(W1x)) = x̂, where

x is the input vector, the output x̂ is similar to x and f
is the activation function. We choose f to be the soft-sign

function, such that f(x) = x
1+|x| . W1 and W2 are the

weights on the first and second layer respectively. W1 is

used for encoding and W2 is used for decoding. After using

backpropagation to minimize squared reconstruction error,

W1 is used to compute the learned features, i.e., the mapping

from input vector x to feature vector z where z = f(W1x)
. In our method, the input vector x is the concatenation of

each pixel’s RGB values of a w × w pixels image patch

extracted from a document image.

In order to learn high-dimensional feature representations

from unlabeled pixels, our feature learning system stacks

three levels of AEs. We denote x(k) as the input vector and

W (k) as the weights of the AE on the k-th level. Our feature

learning strategy on each level is described as follows:

First Level. We randomly select 10 millions 5× 5 pixels

image patches P (1) from the training set. We set the number

of hidden units of the AE to 40.

Second Level. Document images have the property that

one part of an image shares similarities with other part [13].

Thanks to this property, we can use the learned feature

mapping function of the previous level and convolve them

with larger image patch to learn high-order feature repres-

entations. A 15 × 15 pixels image patch P (2) is composed

by 3 × 3 patches P (1) without overlapping. The input

vector of each P
(1)
n is denoted by x

(1)
n , where n is the

patch number. The input vector x(2) is the concatenation

of f(W
(1)
1 x

(1)
1 ), · · · , f(W (1)

1 x
(1)
9 ). The number of hidden

units of the second-level AE is 30 and 10 millions randomly

selected patches P (2) are used for training.

Third Level. We repeat the same procedure as for the

second level. Therefore P (3) covers 45× 45 pixels. The AE

has 20 hidden neurons and is trained on 10 millions patches.

The settings have been tuned in our cross validation

procedure to reach a tradeoff between accuracy and CPU

load. For the details of stacked convolutional autoencoder,

please refer to [6].

C. Classifier training and pixel labeling

Our objective is to label pixels into classes, i.e., periphery,

background, text block, and decoration. To this end, an

SVM is trained with the labels and the learned features (cf.

Section III-B) of the central pixels of the superpixels on

the training images. The features of a given pixel are the

concatenation of the nth-level features z(n) from patches

P (n) centered on that pixel where z(n) = f(W
(n)
1 x(n)),

n ∈ {1, 2, 3}.

To segment an image, we first generate superpixels on

that image. Then each superpixel is represented by the

feature vector of its central pixel. With the trained SVM, the

superpixels are classified into four classes, where the central

pixel’s class is considered as the class of its corresponding

superpixels.
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Figure 3: The first row shows the segmentation results without
using the post-processing method. The second row shows the
segmentation results by using the post-processing method. The
colors: black, white, blue, and red are used to represent: periphery,
background, text block, and decoration respectively.

D. Post-processing

By observing some page segmentation results with the

proposed method on randomly selected images in the valid-

ation set, we find some reoccurring types of classification.

Due to the degradation, in the blocks of the text, some

superpixels are misclassified as background. And some

superpixels on the background are misclassified as text

or decoration. Our objective is to relabel these isolated

superpixels. For a given image, based on the segmentation

result obtained in Section III-C, we first generate connected

components based on the background pixels. Then the pixels

are relabeled to text, if their connected component’s size

is less than 1% of the size of the image. Similarly, the

non-background pixels are relabeled to background, if their

connected component’s size is less than 1% of the size of the

image. Figure 3 gives some results of the post-processing.

(a) (b) (c)

Figure 4: Example pages from the three dataset.

IV. EXPERIMENTS

In order to compare the proposed method with our pre-

vious pixel-level method [6], we use the same datasets [5],

scaling factors2 α and follow the same evaluation protocol.

The original image sizes are: 2200 × 3400, 2000 × 3008,

and 1664 × 2496 pixels for the datasets: G. Washington,

Parzival, and Saint Gall respectively. Four classes of layout

elements are defined in the Parzival and Saint Gall datasets,

i.e., periphery, background, text block, and decoration. And

three classes are defined in the G. Washington dataset, i.e.,

periphery, background, and text block. To compare the page

segmentation methods, three criteria are used for evaluation,

i.e., (1) pixel classification accuracy [4], (2) segmentation

speed, (3) training set’s size.

The proposed method is implemented in Java. All of the

experiments are performed on a PC with an Intel Core i7-

3770 3.4 GHz processor and 16 GB RAM.

A. Comparison with pixel-level method

The drawback of the pixel-level method [6] is that it is

very slow (cf. Table I). Furthermore, because we have to

keep all data in a file for classifier training, this method is

memory inefficient. In this work, we use SLIC [1] as a pre-

processing procedure in order to increase the speed without

degrading the quality of the segmentation. The number of the

generated superpixels by SLIC is set to k = 3000 in order

to achieve the compromise between the speed and quality of

the segmentation results. Experiments are performed on the

images of two resolutions with the scaling factors: α = 2−2

and α = 2−3. Figure 5 gives some segmentation results

by using the pixel-level method and the proposed method.

Table I reports on the performances of the page segmentation

with the pixel-level method and the proposed superpixel-

level method. We observe in comparison to the pixel-level

method, the proposed method is more efficient. It is 341

times faster on the G. Washington dataset, 639 times faster

on the Parzival dataset, and 202 times faster on the Saint
Gall dataset with the scaling factor α = 2−2. The proposed

method also achieves better segmentation results on the

G. Washington dataset and comparable segmentation results

on the Parzival and Saint Gall datasets. Furthermore, the

proposed method is more memory efficient. In the pixel-

level method, pixels are randomly selected on the images.

In the proposed method, we choose all the central pixels of

the superpixels as training samples. It is shown in the table

that with much fewer training pixels, the proposed method

achieves comparable segmentation results.

B. Comparison of superpixel algorithms

To evaluate the impact of different superpixel algorithms

on our page segmentation method. We compare four state-

of-the-art superpixel algorithms: FH [9], MS [8], WS [19],

2Due to the large size of the images, we scale images to smaller size
with a scaling factor α < 1.0.
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Table I: Summary of segmentation results by using pixel-level and superpixel-level methods. Experiments are performed on two image
scaling factors α ∈ {2−2, 2−3}. The criteria used for evaluation are: classification accuracy A (%) [4], run time per image T (min.),
and the number of training pixels per image N . For the pixel-level method, the number of training pixels per class is denoted as n. The
number of superpixels generated by SLIC [1] is predefined as k = 3000.

Pixel-labeling method [6] (n = 10k) Pixel-labeling method (n = 50k) Pixel-labeling method (n = 100k) The proposed method
A (%) T (min.) N A (%) T (min.) N A (%) T (min.) N A (%) T (min.) N

α = 2−2

G. Washington 81.3 477 30k 85 477 150k 85.8 477 300k 86.9 1.4 3k
Parzival 58.6 594 40k 85.8 594 200k 87.3 594 400k 87.2 0.93 3k
St.Gall 94.3 190 40k 96.4 190 200k 96.9 190 400k 95.5 0.94 3k
α = 2−3

G. Washington 85 114 30k 86.1 114 150k 86.4 114 300k 89.5 0.46 3k
Parzival 86.5 101 40k 95.3 101 200k 96.1 101 400k 91.7 0.91 3k
St.Gall 95.2 41 40k 96.8 41 200k 97.3 41 400k 95.7 0.58 3k

Table II: Comparison of four state-of-the-art superpixel algorithms on page segmentation for historical document images. The criteria
used for evaluation are: classification accuracy A (%) [4], run time per image T (min.), and the number of training pixels per image N .
Experiments are performed on the three datasets without using the post-processing procedure. Images are scaled down with the factor
α = 2−3. The number of superpixels generated by SLIC [1] is predefined as k.

G. Washington Parzival St. Gall
A (%) T (min.) N A (%) T (min.) N A (%) T (min.) N

FH [9] 84.9 0.01 400 86 0.04 400 74.1 0.01 150
MS [8] 86.3 0.03 700 88.2 0.19 700 79.8 0.02 300
WS [19] 85.6 0.06 10k 89.4 0.14 1k 88.8 0.03 500
SLIC [1] (k = 3000) 87 0.34 3k 91.4 0.89 3k 94.9 0.56 3k
SLIC (k = 10000) 88.3 3.23 10k 93.9 5.48 10k 95.5 3.32 10k
SLIC (k = 20000) 89.1 9.82 20k 94.5 12.24 20k 95.9 18.19 20k

(a) (b) (c) (d) (e) (f)

Figure 5: Segmentation results of pages in Figure 4a, 4b, and 4c. The pixel-level segmentation results (α = 2−3, N = 100k) are: 5a,
5c, and 5e respectively. The superpixel-level segmentation (with post-processing) results are: 5b, 5d, and 5f respectively. The colors:
black, white, blue, and red are used to represent: periphery, background, text block, and decoration respectively.

and SLIC [1]. The open source Java library BoofVC3 is

used to generate superpixels with these algorithms. In these

experiments, the post-processing method is not performed.

Figure 6 shows the visual results of the produced superpixels

with these algorithms. Table II reports on the classification

accuracy [4], average run time per image, and number

of generated superpixels per image of the four superpixel

algorithms. It is shown that SLIC outperforms the other three

algorithms in classification accuracy. Another advantage of

SLIC is that it provides control over the number of generated

superpixels. The other algorithms do not provide an explicit

control over the number of superpixels. Therefore, with

SLIC it is easier to tune the number of superpixels to control

the tradeoff between run time and segmentation quality.

Moreover, on the historical document images, SLIC pro-

3http://boofcv.org/

duces superpixels with regular sizes and shapes. Benefiting

from this property, a graphical model (e.g., CRF) can be

applied on the superpixels in order to refine the segmentation

results. From the experiments, we conclude that SLIC is

more suitable for our page segmentation application on

historical document images.

V. CONCLUSION

In this paper we presented a novel page segmentation

method for color historical document images. The method is

based on superpixel classification with unsupervised feature

learning. We show that by using SLIC [1] as a preprocessing

step, on average, the proposed method is 394 times faster

than our previous pixel-level method [6] on three datasets [5]

where the scaled image sizes are: 550×850, 500×752, and

416×624 pixels. Moreover, on those scaled images, with al-

most 99 times fewer training samples, the proposed method
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(a) FH (b) MS

(c) WS (d) SLIC

Figure 6: Superpixels produced by four algorithms.

achieves comparable segmentation results. We also compare

four state-of-the-art superpixel algorithms as preprocessing

step in our page segmentation method. Experiments show

that with SLIC, the proposed method achieves superior

segmentation results. In addition, the superpixels produced

by SLIC on the historical document images have uniform

sizes and regular shapes. Benefiting from this property, our

future work includes using a graphical model framework

(e.g., CRF) to model the dependencies of the superpixels in

order to refine the segmentation results.
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